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I. STATE INVERSION USING OPTIMAL CONTROL TECHNIQUES

The system consists of a quasi-one-dimensional condensate, i.e. a weakly interacting bosonic ensemble that
is loosely confined longitudinally, but tightly confined transversally, as in previously realised optimal control
experiments with atom chips [SI) [S2]. In the transverse direction that hereafter we denote as the y-axis the
potential is initially a single (anharmonic) well, as in Refs. [S1L [S2], but then it is controlled dynamically by means
of an external radio-frequency field in order to transform it to a double-well potential [S3]. As in previous related
experiments [S1], [S2], the system dynamics along the y-axis can be described through an effective one-dimensional
Gross-Pitaevskii equation, whose nonlinear Hamiltonian is given by
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Here, m is the mass of the boson, specifically of the alkali atom 3"Rb, V(y,t) is the time-dependent potential
that we manipulate optimally, g is the effective one-dimensional boson-boson coupling constant (see Ref. [S2] for
further details), N is the number of bosons, and ¢(y,t) is the condensate wavefunction formalised to unity. We
note that because of the large separation of time scales between the transverse and longitudinal degrees of freedom,
the quantum dynamics of the latter can be effectively assumed to be frozen during the excitation process in the
transverse direction, which we are interested in.

The external potential V(y,t) produced by the atom chip is approximated by

V(y,t) = ao(t) + az(t)y® + as(t)y” + as(t)y®,

6
an(t) = o\ [Ry (1)) for n =0,2,4,6, (S.2)
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where the time-independent parameters Oc;"), which are provided in Tab. have units of kHz/m". The numerical

values of the parameters ag-n) have been obtained by numerically fitting the simulated and experimentally calibrated
potential generated by the atom chip with a polynomial of sixth order. This strategy has been adopted to simplify
the numerical effort of the optimisation. The dimensionless time-dependent function Rj(t) is proportional to the
strength of the radio-frequency field applied to the atom chip and it is the control parameter we have to optimise.

In the present experiment, the quasi-condensate is initially prepared in the ground state, ¢o(y), of the initial
single well potential V' (y,0). Our goal is to bring the quasi-condensate in the second excited state, yo(y), of
the external potential V(y,t;) in double-well configuration in a time ¢; shorter than the decoherence time of
the system. Here, the nonlinear eigenstates ¢g 2(y) of the Hamiltonian are determined numerically by the
imaginary-time technique with N = 700. To this end, we employ optimal control techniques to generate the
optimal radio-frequency field Ry(¢) that minimises the cost function defined at the final time ¢; as
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0 |54.451 74.025 -3.4221 0.2406
1 -8.6264 -19.429 24.648 -6.0581
2 |3570.3 - 3309.1 1231.6 -153.85
3 |-12650 18497 -8450.8 1221.2
4 125646 -46369 23425 -3661.4
5 |-27546 56311 -30416 5049.5
6 12106 -26894 15268 -2663.3

Table S1. The parameters aEn) in units of kHz/pum™ for n =0, 2,4, 6.

Specifically, we employ the CRAB optimisation method [S4]. Here, the radio-frequency field Rf(t) is expanded
into a (not necessarily orthogonal) truncated basis
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for 0 <t < t;. Here Ny = 10 denotes the total number of frequencies considered in Eq. (S.4); the multiple
frequencies allow us to engineer non-trivial pulses with multiple maxima and minima, as shown in Fig. S} The
dimensionless function

A(t) = 0.5 + 10 [e_gt ¥ e—8<tf—t>} (S.5)

is large and positive at ¢t = 0, ¢f, thereby fixing the initial and final values of the RF-field. On the other hand,
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Figure S1. The ramp Ry(t) of the amplitude of the radio-frequency field against time.

A(t) assumes the value 0.5 at intermediate times, so as to allow for variations of the RF-field within the interval
(0,tf). Furthermore, owing to experimental constraints, we impose the condition 0.3 < Ry(t) < 0.55 ¥ t. We note
that the field is already given in dimensionless units, where times are rescaled with respect to 1/wy. The
optimisation is carried out by varying the parameters c;, d; and f;. Thus, the optimisation has been performed in
such a way that the double-well potential V' (y,t) is obtained by setting Ry (t;) = 0.51 at final time ¢;/wo = 1.4
ms, while R¢(0) = 0.3 results in the initial single-well potential. The exponential function appearing in Eq.
and its width 1/8 have been chosen such that it increases smoothly and monotonically to the numerical value 0.21
as t — t;, such that the control parameter reaches the target value Ry (ty) = 0.51 and we avoid excitation of
the condensate along the vertical z-axis. In Fig. |[S1|the optimised curve of the parameter Ry (t) is plotted against
time. The values of Ry(t) for t < 0 and ¢ > t; = 1.4 ms in Fig. signify that Ry (¢) is time-dependent only for
the intermediate optimization times (0,t), while it assumes constant values outside this time-interval.



A. Transfer efficiency

We estimate the percentage of atoms transferred to the source state from the evolution of the wavefunction
of the BEC after the excitation pulse. If more than one eigenstate of the potential are populated, we should
observe a beating pattern in the momentum distribution varying with the holding time in the trap. If the excited
wavefunction corresponds to the source state, which is an eigenstate of the double-well potential, the outcome
would be a constant profile. The experimental profile was fitted with a linear combination W g,..s(y) of different
single-particle eigenstates 1;(y) up to the sixth order (i = 6):

W guess(Y) = patba(y) + Z e /pii(y) (S.6)

where ¢; (i = 0,1,4,6) are the relative phases and p; (i = 0,1,2,4,6) are the normalized contributions from the
five different states considered. The odd components from the third and fifth order were excluded from the fit
function based on symmetry arguments to reduce the number of free parameters. This is consistent with the
transverse symmetry of the experimental data. The main contribution to the experimental profile comes from the
second excited state of the double-well potential (~ 97%), corresponding to the source state. This demonstrates
the state inversion using the optimal control engineered sequence.

II. CREATION OF THE DTB STATE

A wave function ¥(ry, ro) = V(x1, y1, 21; T2, Y2, 22) of two spin-polarized bosonic atoms is symmetric with
respect to the permutation of the coordinates (z1, y1, 21) and (x2, Yy, 22) of these atoms. If we factorize it into the
longitudinal (||) and transverse (L) parts, W(z1, y1, 21; T2, Y2, 22) = ¥ (z1; 22)W 1 (Y1, 21; Y2, 22) we readily see
that each of them must be symmetric with respect to the permutation of its coordinates, ¥ (z1; x2) = V)| (z2; 71)
and U (y1, 21; Y2, 22) = ¥ (yo, 22; Y1, 21), in order to be non-zero at ry = ry, thus allowing for s-wave scattering
on the two-atom contact interaction (pseudo)potential o< §(z1 — x2)d(y1 — y2)d(z1 — 22), where J is the Dirac
delta-function. We can write the initial state of the two particles in the spatial basis as

Vin (21, Y1, 215 T2, Y2, 22) = (Y1, 2112) (Y2, 22]2)(w1|ks = 0)(22|ks = 0), (8.7)

where |n,) = |2) represents the transverse second-excited state and we assumed that longitudinally only the
|k, = 0) mode is initially populated (the source state is at rest longitudinally).

The emission process conserves the symmetry of the initial two-particle wavefunction. However, the d(x; — x2)
term precludes transitions into antisymmetric longitudinal states. Therefore, only the longitudinal state ({x1| —
ko){(xa|ko) + (o] — ko)(x1]ko))/V/2 is possible. For the transverse component of the final wavefunction, let us
consider the {|L), |R)} basis. Due to bosonic symmetry, the transverse state is also symmetric with respect to the
exchange of transverse coordinates. However, transitions to |LR) or |RL) are not possible, since

(Y1, 21| L) (y2, 22|R) + (y1, 21|R)(y2, 22|L)

/dy1/dy2/dz1/d22 (2ly1, 21)(2ly2, 22)0(y1 — y2)d(21 — 22) NG
=ﬁ/@/w«mJWm4mmam:o

(S.8)

due to negligible overlap between the states |L) and |R).
The remaining symmetric transverse states are |¥7 ) = (|LL) —|RR))/v2 and |U}) = (|LL)+|RR))/V/2. Since
for a perfectly symmetric trap

[ [z @l 22w AL = [ dy [ a2y, 2P, AR, (5.9)

the matrix element for a transition from [2)|2) to |¥7]) vanishes due to destructive interference. The only non-
zero matrix element couples |2)|2) to |\I/1r> Taking into account also the longitudinal component (e~*(®1=22) 4
e~ k(@2=21)) /\/2 we recover the DTB state |Wprg) = (|L)_|L)+ +|R)_|R);)/V2.



Separation |Interference
th(,ld(ms) 0.025 0.425 0.025
Total images| 684 825 1498
&k | 018 | 0.2 0.30
&/ k, |0-10(1)]0.14(1)|  0.10(1)

Table S2. Twin character Main parameters of the two sets of data considered in this paper: the uncorrected atom
number-squeezing factor fio/,ko and the noise-corrected one Eio/,ko, The latter is an indicator of the twin character of
the DTB emission, i.e. the process of creation of pairs of atoms carrying opposite momenta.

A. Extension to a fermionic system

In our present experiment the source state from where the atom pairs are emitted relies on a Bose-Einstein
condensate which has a defined longitudinal momentum k, = 0. Moreover, the emitted double twin-atom beams
are created by an s-wave scattering process. The same procedure does not apply to a fermionic gas. The atoms
in a fermionic source state would have many longitudinal momenta up to the Fermi momentum kr and the
total momentum of the emitted atom pairs would be not well defined. Moreover, spin-polarized fermions do
not experience s-wave scattering, hence the collisional process at the basis of the emission of twin-beams would
be completely different. So a source of fermionic twin atoms would have to look completely different. One can
imagine breaking up a bosonic diatomic Feschbach molecule into its fermionic components as for example proposed
as source for entangled atom pairs in [S5], but imprinting a significant momentum on them would require additional
processes like transferring the molecule before the break-up into a higher excited quasi bound state. We could
then envision such a system that produces twin fermionic atoms in a single waveguide. The spin degree of freedom
would replace the double waveguide transverse degree of freedom of our setup and the emitted state would be a
maximally entangled spin state [®7) = (||)_ [1), — [1)_[1),)/V2.

III. TWIN CHARACTER AND TOTAL TRANSVERSE SQUEEZING

As already done in [S6], we check the twin character of the DTB emission by looking at the fluctuations of the
difference photon number S_ between the atoms with momentum +ky over the different experimental realizations.
For the separation data, we simply integrate over the two transverse modes S_ = (S;_ + Sr_) — (Sr, + Sr,),
where Sy,_ is the signal contained in the black box L_ in Fig. 2a corresponding to the single-particle mode |L_)
(and similarly for the others). If there is no correlation among the signals in the two zones that are being analysed,
the signal difference follows a binomial distribution. We can then evaluate the number squeezing factor 5,30 /—ko
between the two longitudinal momentum classes and classify fﬁo J—ky < 1 as a number-squeezed emission. The
main information about the data are listed in Tab. |S2| In particular, the results on the noise-corrected 5,%0 ko
between the two momentum states +ky confirm the results in [S6], thus demonstrating the presence of a strongly
non-Poissonian amount of correlations between the DTBs of opposite momenta. The error on £2 is estimated using
a bootstrapping method comparing 50 statistical copies of the full experiment.

We can also consider the total transverse number squeezing, i.e. the signal difference between the number of
pairs emitted in the L- and in the R-waveguide, after integrating on the two longitudinal momenta (see light-blue
dashed boxes in Fig. 2b). Since the atoms are detected pairwise independently into the L- and R-waveguide, we
expect the distribution of the pairs difference M_ to be binomial (uncorrelated). Hence, if M is the total number
of pairs, the corresponding variance is AM? = M, . Let us now consider the distribution of the signal difference
N_ between the atoms in the L-waveguide and R-waveguide and its variance AN?. Since var(aX) = a*var(X)
for any variable X where a is a constant, we get AN? = A%2(2M_) = 4AN? = 4M, = 2N,. From this follows
that €7 = AN2 /AyN2 = (2N ) /Ny = 2.

IV. IMAGING SYSTEM

Our fluorescence based imaging system consists of a nearly resonant sheet of light made of two counter-
propagating laser beams. The light-sheet excites the atoms and make them undergo several absorption-spontaneous



emission cycles. Part of these photons are collected on a camera placed below the atom chip and converted into
electrons. In principle, single atom recognition is possible and was already demonstrated in this system [S7]. If the
two counter-propagating laser beams are not exactly overlapped, or if their power is unbalanced, a light-pressure
effect can show up in the fluorescence picture. For the data considered in this paper this effect is only residual
(Fig. 2a). We take pictures after a time-of-flight t7op = 44 ms.

A. Far-field regime for the transverse direction

The final position xr of a trapped particle along a certain spatial direction x after its release from the trap
at time ¢ = 0 and a time-of-flight trop = tp reads xp = xg + @o - trp = xo + po/m - tp, where xg (L9 = po/m)
represents the initial position (velocity) of the particle in the trap at the moment of the release and py its initial
momentum. Assuming a harmonic trapping (i = iw,z) with angular frequency w, along the x-axis, we derive
the expression £p = g + iw,xo - tp = o + po/m - tp. The condition of the final position expressing the initial
momentum of the particle in the trap at the moment of the release is then py/m - tp > xo, which translates into
the requirement iw,xg - tp > 29 — tp > 1/ws -, independently of the spatial direction we are referring to. In
our experimental setup we have w, ~ 27 - 10 Hz and w,, . = 27 - 2 kHz, which corresponds to 1/w, ~ 16 ms and
1/wy.» ~ 0.1 ms. Since in our setup tr = 44 ms, the condition tp > 1/w, , . is well satisfied along the transverse
y,z-axis and only partly satisfied along the x-axis. This shows that the transverse expansion of the atomic cloud
after its release from the chip trap is fast compared to t7or, hence the fluorescence image of the final cloud shows
the in-situ momentum distribution along the y-axis.

B. Atom detection and detection noise

Experimentally we cannot access the atom number directly, but rather we measure the number of photons hitting
the camera. Having considered two boxes 1 and 2 on a typical fluorescence image (consider for example any two
black boxes in Fig. 2a), we define the sum and difference photon signal relative to the two boxes Sy = S;— S, where
Sy (S2) is the measured fluorescence signal from box 1 (2). If we assume that to each imaged atom correspond
exactly p photons, then we can write

St = pNy, (S.10)

where N is the sum or difference atom number relative to the same two boxes. Having assumed p constant, we
can derive an expression for the variance of the signal difference AS? = var(pN_) = p?AN?. Using Eq. and
the expression AyN? = N, we get

AN? _ p?> AN? AS?
AyN2 ~ p2 Ny pSy

(S.11)

In order to evaluate the average number of photons p scattered by each atom, we compare fluorescence images
to absorption images for increasingly larger atomic clouds [S8]. From this comparison, we derived p = 29.4 for
the separation data and p = 20.7 for the interference data, meaning each atom is generating, on average, clusters
of around 20-30 photons when crossing the light-sheet. We come now to the discussion on detection noise [S9].
The final number of counts created by each photon hitting the camera is a random variable, whose statistics is
governed by photonic shot noise. On top of the usual shot noise level, there is an additional noise generated
by the amplification stage at the electron-multiplication register of the camera. To account for it, the variance
due to shot noise gets doubled [S10]: A,,S? = 2S,. A second contribution comes from the background signal b
contained in a certain area of the camera chip, which is important when regions with low signal are considered.
Since the background signal is indistinguishable from the actual signal coming from the atomic fluorescence, the
same considerations made above apply and A,,b?> = 2b,. We define the total noise contribution to the variance
A,S%2 = A, 5% + A, b2 and modify the expression for the uncorrected number squeezing to take into account
the total noise as

AS? — A, S?

&= A,S? (5.12)



We can then define the minimum value of atom number squeezing £2 between the momentum states detectable in
our system as
2 _ A, S% _ 284 +2bp 2/p
TAS? pSy

for b+ < S+. (813)

£

Typical values are £2 ~ 0.08 (separation data) and &2 ~ 0.2 (interference data). The difference can be explained
by the different signal-to-noise ratio S; /by for the two datasets.

V. ONE-DIMENSIONAL FIT OF THE SECOND-ORDER CORRELATION FUNCTION

The one-dimensional fringe pattern of géf),,(k{, k) is fitted using the fit-function

fky) = [d + C cos (27r Fy = K)] exp [(_%_K&} , (S.14)

Cexp Csigma/eexp)

where K is the coordinate of the centre of the fringe pattern, cs;gmq is a dimensional parameter, e, represents
the diagonal fringe spacing, C' = 0.032 4= 0.004 is the contrast of the fringe pattern and d an offset.
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